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Abstract: The problem of stabilization and consensus of nonlinear multiagent system with mixed dealy and
Markovian jumping parameters using both sampled-data and reliable control are presented in this paper. We
discuss about three issues of the non-linear MASs using a protocol 1) to derive stability condition 2) to achieve
the consensus creteria 3) to calculate the controller gain matrix. These three creteria are obtained by employing
a relevent Lyapunov Krasovskii functional and derivating it by using Jensen’s inequality, integral inequality
technique with Kronecker product properties, we get a linear matrix inequality form which can be solved by
wellknown MATLAB LMI toolbox. Terminally, numerical example is provided to illustrate the effectiveness
of theoretical results.
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1 Introduction
For the past few years, the problem of linear and non-linear multi-agent systems is an interesting topic

attracted by many literature’s due to its plentiful applications in various fields like unmanned autonomous
vehicles, large-scale sensor networks, spacecraft formation flying and so on [1]-[4]. A major problem in this
multi-agent systems is the consensus problem that is the agreement of a group of agents on their states of leader
or leaderless by interaction. The main motive of the consensus protocol is to assure the intelligible performance
of multiagents by implementing suitable feedback control signals and by incorporating communication or net-
work topologies and its applied in various fields such as vehicle systems, groups of mobile autonomous agent,
networked control systems [5],[6]. To mention the communication protocols between the multiagents, graph
theory has been effectively used for the modeling of networks and the derivation of stability conditions via
Lyapunov stability theory [7],[8].

We known that time-delay is frequently causes unwanted signal like oscillations and noises of the system so
it is very important to study them which can be discussed in [9]. Especially multiagent system with mixed time
delay system can be studied in [10]. However lots of controls are used by researchers, specially in sampled-data
control its states suffer successive impulses at fixed times. The sampled-data system is a combination of both
continuous time and discrete time signals. In sampled-data control systems, control signals are in constants
during sampling intervals and are allowed to change only at sampling instants. Because of this reason, the
control signals in sampled-data control systems have stepwise form and these discontinuous signals cannot be
applied directly to stabilize control systems. Consensus of multi-agent system with sampled data control are
examined in [11],[13].

Designing the reliable control with multi-agent systems has been attracted since practical systems often
have actuator failures. To stabilize the systems against actuator failures or to design fault-tolerant control
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systems, the well known reliable control system is used. The actuator failure model contains scaling factor
with upper and lower bounds to the signal which can be measured. In [14],[15] reliable control with mul-
tiagent system is invesigated. Markovian jump systems is used to gives an essential results for the system
model which are affected by random switching behaviour. Lots of interesting results are exists for Markovian
jumping parameters in multiagent systems because of its applications in different fields which are examined in
[16],[17]. Consensus problem for linear multi-agent system with both sampled -data and reliable control by
using Wirtinger-based integral inequality can be examined in [18].

Motivated by this above disscussion, in this paper, stabilization and consensus problem for mixed delayed
non-linear multi-agent systems with both sampled-data and reliable control along with Markovian jumping pa-
rameters will be studied.

Notations: The notations used in this paper are standard. Rn denotes n dimensional Euclidean space and
Rn×m is the set of all n×m real matrices. The script ∗ denotes the symmetric term in the matrix. The transpose
and inverse for the matrix A is denoted by AT and A−1, respectively. I is the identity matrix with appropriate
dimension, X > 0 is symmetric positive definite matrix, A⊗ B denotes the Kronecker product of matrices A
and B.

2 Problem description and preliminaries
Before we enter in to the main part of this section we must know about some basic concepts of the algebraic

graph theory. It is very important to examine the problem of multi-agent system. A graph is used to indicate
the interconnection of agents with one another. It may be directed or undirected graph. In this paper we con-
sider the undirected graph G = (V , E , A ) with order N , i.e., where N is the number of agents, the vertex set
V = {v1, v2, ..., vN} represents the set of all agents, the edge set E ⊆ V ×V represents the connection between
the agents, and A = [aij ]N×N is the adjacency matrix with aij > 0 if (vi, vj) ∈ E and aij = 0 otherwise. The
neighbour set of vi can be represented as Ni = {j : (vi, vj) ∈ E}. Let D = diag{deg(1), deg(2), ..., deg(i)}
be the degree matrix of the undirected graph G with entries deg(i) =

∑
j∈Ni

aij . Then the Laplacian matrix
of G can be expressed as L = D −A .

Now we consider a mixed delayed non-linear multiagent system with Markov jumping parameter con-
sists of N agents, is represented as follows:

ẋi(t) = A1(r(t))xi(t) +A2(r(t))f(xi(t)) +A3(r(t))f(xi(t− τ(t))) +A4(r(t))

∫ t

t−τ(t)
f(xi(s))ds

+ B(r(t))ui(t), i = 1, ..., N, (1)

where N is the number of agents, xi(t) ∈ Rn is a state of agent i, ui(t) ∈ Rm is a consensus protocol,
r(t)(t ≥ 0) is continuous time Markovian process taking the values from the finite set space S with transition
probability matrix Π , Πpq is given by

Pr(r(t+ M (t)) = q|r(t) = p) =

{
Πpq M (t) + o(M (t)), if q 6= p,
1 + Πpq M (t) + o(M (t)), if q = p,

where M (t) > 0, limM(t)→0
o(M(t))
M(t) = 0 and Πpq ≥ 0 is the transition rate from mode p at time t to mode q at

time t+ M (t) if p 6= q and Πpp = −
∑N
q=1,q 6=p Πpq∀p ∈ S.A1(r(t)), A2(r(t)), A3(r(t)), A4(r(t)), B(r(t))

are known constant matrices. For our convienence, we denote the termsA1(r(t)), A2(r(t)), A3(r(t)), A4(r(t)), B(r(t))
are as A1p, A2p, A3p, A4p, Bp respectively. The control input is denoted as

ui(t) = −
∑
j∈Ni

aij(xj(t)− xi(t)), i = 1, ..., N (2)
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where aij are the interconnection weights defining{
aij > 0, if agent i isconnected to agent j
aij = 0, otherwise

The actuator fault is considered in this paper,

uFi (t) = Rui(t) (3)

whereR is the actuator fault withR = diag{r1, r2, ..., rn}, 0 ≤ rm ≤ 1, m = 1, 2, ...n.

We assumed that the updating instant time is denoted by tk and it satisfies 0 = t0 < t1 < .... < tk < .... <
limk→∞tk = +∞. The sampling interval is defined as tk+1 − tk = ηk ≤ η for any integer k ≥ 0, where
η > 0 represents the largest sampling interval. Define xi(tk) = xi(t−h(t)) with h(t) = t− tk, 0 ≤ h(t) ≤ h
for t 6= tk. Then, combining eqn.(2) and eqn.(3) we get,

ui(t) = −R
∑
j∈Ni

aij(xj(t− h(t))− xi(t− h(t))). (4)

The eqn.(1) becomes,

ẋi(t) = A1pxi(t) +A2pf(xi(t)) +A3pf(xi(t− τ(t))) +A4p

∫ t

t−τ(t)
f(xi(s))ds

+ BpR
∑
j∈Ni

aij(xj(t− h(t))− xi(t− h(t))), i = 1, ..., N, (5)

By using the Kronecker product properties, the above equation can be written as

ẋ(t) = (IN ⊗A1p)x(t) + (IN ⊗A2p)f(x(t)) + (IN ⊗A3p)f(x(t− τ(t))) + (IN ⊗A4p)

∫ t

t−τ(t)

f(x(s))ds+ (L ⊗ Bp)KR(x(t− h(t)), i = 1, ..., N, (6)

The following assumption, definition, lemmas are important to prove our results.

Assumption 2.1. [19] For any j ∈ 1, 2, ..., n, fj(0) = 0 and their exist constants Λ−j and Λ+
j such that

Λ−j ≤
fj(α1)− fj(α2)

α1 − α2
≤ Λ+

j ∀ α1 6= α2.

Definition 2.2. [20] The stabilization of multi-agent system (6) is said to be achieved if, for any given initial
conditions, the following holds:

limt→∞|xi(t)| = 0, ∀ i = 1, ..., N.

Definition 2.3. [21] The consensus of system (1) is said to be achieved asymptotically in the sense of mean-
square if, for each agent i ∈ {1, 2, ..., N} there is a local state feedback ui of {xj : j ∈ Ni} such that the
closed-loop system (6) satisfies

limt→∞E{‖xi(t)− xj(t)‖2} = 0.

Lemma 2.4 (Jensen’s inequality). [22] For any constant matrix M ∈ Rn×n, MT = M > 0, scalars α, β
with α > β and vector x : [β, α]→ Rn, such that the following integrations are well defined, then

−(α− β)

∫ α

β

xT (s)Mx(s)ds ≤ −
(∫ α

β

x(s)ds

)T
M

(∫ α

β

x(s)ds

)
.
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Lemma 2.5. [23]For given symmetric positive definite matrix Y > 0 and any differentiable function x in
[a, b]→ Rn, the following inequality holds:∫ b

a

ẋ(s)Y ẋ(s)ds ≥ 3

4(b− a)
ΩTRΩ,

where Ω = (xT (b), xT (a), 1
b−a

∫ b
a
xT (s)ds), R =

 5Y 2Y −7Y
∗ 4Y −6Y
∗ ∗ 13Y

 .
3 Main results
Theorem 3.1. For given scalars h > 0, µ > 0, τ > 0, then the stabilization and consensus criteria for
the MASs (6) and (1) is achieved respectively if there exists a positive definite matrices P1, P2, Qn, (n =
1, 2, ..., 7), diagonal matrices Γ1, Γ2 and any matrix S, with appropriate dimensions such that the following
linear matrix inequality exists:

Ξ =

[
Ω Ψ
∗ Υ

]
< 0, (7)

where,

Ω =


Ω1,1 Ω1,2 − 3

2 (IN ⊗Q2) − 3
2 (IN ⊗Q2) 0

∗ Ω2,2 0 0 0
∗ ∗ −3(IN ⊗Q3) 0 0
∗ ∗ ∗ −3(IN ⊗Q6)− (IN ⊗Q5) 0
∗ ∗ ∗ ∗ −Λ1Γ2 − (1− µ)(IN ⊗Q1)

 ,

Ψ =


0 Λ2Γ1 0 21

4 (IN ⊗Q3) 21
4 (IN ⊗Q6) 0

(L⊗ B)RX (IN ⊗A2pS) S(IN ⊗A3p) 0 0 (IN ⊗A4pS)
0 0 0 9

2Q3 0 0
0 0 0 0 9

2 (IN ⊗Q6) 0
0 0 Λ2Γ2 0 0 0

 ,

Υ = diag{−(1 − h)(IN ⊗ Q4), −Γ1 + τ2(IN ⊗ Q7), −Γ2, −τ2(IN ⊗ Q2) − 45
4 (IN ⊗ Q3), − 45

4 (IN ⊗
Q6), −(IN⊗Q7)},Ω1,1 =

∑N
q=1 Πpq(IN⊗Pq)+(IN⊗Q1)+τ2(IN⊗Q2)+(IN⊗Q4)+(IN⊗Q5)− 15

4 (IN⊗
Q3)− 15

4 (IN⊗Q6)−Γ1Λ1,Ω1,2 = (IN⊗Pp)+(IN⊗A1pS), Ω2,2 = h2(IN⊗Q6)+τ2(IN⊗Q3)−(IN⊗S).

Proof: Let us consider the Lyapunov Krasovskii functional as follows:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t),
where,

V1(t) = xT (t)(IN ⊗ Pp)x(t),

V2(t) =

∫ t

t−τ1(t)
xT (s)(IN ⊗Q1)x(s)ds,

V3(t) = τ

∫ 0

−τ

∫ t

t+θ

xT (s)(IN ⊗Q2)x(s)dsdθ + τ

∫ 0

−τ

∫ t

t+θ

ẋT (s)(IN ⊗Q3)ẋ(s)dsdθ,

V4(t) =

∫ t

t−h(t)
xT (s)(IN ⊗Q4)x(s)ds+

∫ t

t−h
xT (s)(IN ⊗Q5)x(s)ds,
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V5(t) = h

∫ 0

−h

∫ t

t+θ

ẋT (s)(IN ⊗Q6)ẋ(s)dsdθ,

V6(t) = τ

∫ 0

−τ(t)

∫ t

t+θ

fT (x(s))(IN ⊗Q7)f(x(s))dsdθ.

Calculating the derivatives of V (t) we get,

V̇1(t) = 2xT (t)(IN ⊗ Pp)ẋ(t) +

N∑
q=1

Πpqx
T (t)(IN ⊗ Pq)x(t), (8)

V̇2(t) = xT (t)(IN ⊗Q1)x(t)− (1− µ)xT (t− τ(t))Q1x(t− τ(t)), (9)

V̇3(t) = τ2xT (t)(IN ⊗Q2)x(t)− τ
∫ t

t−τ
xT (s)(IN ⊗Q2)x(s)ds+ τ2ẋT (t)(IN ⊗Q3)ẋ(t)− τ

∫ t

t−τ
ẋT (s)

(IN ⊗Q3)ẋ(s)ds, (10)

V̇4(t) = xT (t)((IN ⊗Q4) + (IN ⊗Q5))x(t)− (1− h)xT (t− h(t))(IN ⊗Q4)x(t− h(t))

− xT (t− h)(IN ⊗Q5)x(t− h), (11)

V̇5(t) = h2ẋT (t)(IN ⊗Q6)ẋ(t)− h
∫ t

t−h
ẋT (s)(IN ⊗Q6)ẋ(s)ds, (12)

V̇6(t) = τ2fT (x(t))(IN ⊗Q7)f(x(t))− τ
∫ t

t−τ(t)
fT (x(s))(IN ⊗Q7)f(x(s))ds. (13)

By using Jensen’s inequality,

−τ
∫ t

t−τ
xT (s)

(
IN ⊗Q2

)
x(s)ds ≤ −

(∫ t

t−τ
x(s)ds

)T
(IN ⊗Q2)

(∫ t

t−τ
x(s)ds

)
, (14)

−τ
∫ t

t−τ(t)
fT (x(s))(IN ⊗Q7)f(x(s))ds ≤ −

(∫ t

t−τ(t)
f(x(s))ds

)T
(IN ⊗Q7)

(∫ t

t−τ(t)
f(x(s))ds

)
.

(15)

By using Lemma ,

−τ
∫ t

t−τ
ẋT (s)(IN ⊗Q3)ẋ(s)ds ≤ −3

4
ΘT

1 Π(IN ⊗Q3)Θ1, (16)

−h
∫ t

t−h
ẋT (s)(IN ⊗Q6)ẋ(s)ds ≤ ΘT

2 Π(IN ⊗Q6)Θ2, (17)

where,

Θ1 = [x(t) x(t− τ)
1

τ

∫ t

t−τ
xT (s)ds], Θ2 = [x(t) x(t− h)

1

h

∫ t

t−h
xT (s)ds], Π =

 5 2 −7
∗ 4 −6
∗ ∗ 13

 .
For any positive diagonal matrices Γ1 and Γ2, from Assumption we have,[

x(t)
f(x(t))

]T [ −Λ1Γ1 Λ2Γ1

∗ −Γ1

] [
x(t)

f(x(t))

]
≥ 0, (18)[

x(t− τ(t))
f(x(t− τ(t))

]T [ −Λ1Γ2 Λ2Γ2

∗ −Γ2

] [
x(t− τ(t))
f(x(t− τ(t))

]
≥ 0. (19)
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For any appropriate dimensional matrix S, the following equation hold:

ẋT (t)(IN ⊗ S)[−ẋ(t) + (IN ⊗A1p)x(t) + (IN ⊗A2p)f(x(t)) + (IN ⊗A3p)f(x(t− τ(t))) + (IN ⊗A4p)∫ t

t−τ(t)
f(x(s))ds+ (L ⊗ Bp)KR(x(t− h(t))] = 0. (20)

From eqn(8) to (20) we get,

V̇ (t) ≤ ξT (t)Ξξ(t), (21)

where ξ(t) = [x(t) ẋ(t) x(t− τ) x(t− h) x(t− τ(t)) x(t− h(t)) f(x(t)) f(x(t− τ(t))) 1
τ

∫ t
t−τ x(s)ds

1
h

∫ t
t−h x(s)ds

∫ t
t−τ(t) f(x(s))ds], we get V̇ (t) ≤ 0 which leads to limt→∞|xi(t)| = 0, therefore by

Definition 2.2 the closed loop system (6) is stable and by Definition 2.3 the multiagent system (1) achieves
consensus in mean square. This completes the proof.

4 Numerical examples
Here we present the numerical example to show the effectiveness of theoretical results.

Now we consider 4 agents i.e., N = 4 the communication among the agents are represented through the
following graph G.

Agent 1

Agent 3

Agent 2

Agent 4

fig 1 The interconnection topology graph G

By using this graph, the Laplacian matrix is obtained as L =


1 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

 .
Example 4.1. Consider a mixed delayed closed loop multiagent system with Markovian jumping parameter is
as follows:

ẋ(t) = (IN ⊗A1p)x(t) + (IN ⊗A2p)f(x(t)) + (IN ⊗A3p)f(x(t− τ(t))) + (IN ⊗A4p)

∫ t

t−τ(t)

f(x(s))ds+ (L ⊗ B)KR(x(t− h(t)), (22)

with the parameter as,
Mode 1:

A11 =

[
−0.5 0

0 −1.8

]
, A21 =

[
−2.6 1.8
0.5 0.01

]
, A31 =

[
−0.5 1.1
2.3 −0.7

]
, A41 =

[
1 0.1

0.4 3.7

]
,

B1 =

[
1.3 0
−1 1.3

]
,
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Mode 2:

A12 =

[
−2.5 0

0 −1.7

]
, A22 =

[
1.4 0.8
0.05 1.7

]
, A32 =

[
0.6 1.8
1.5 0

]
, A42 =

[
1 0.4

0.2 1

]
,

B2 =

[
1.4 0
−1 1.4

]
.

The other matrices are taken as

Λ1 = Λ2 =

[
0.1 0
0 0.1

]
, R =

[
0.2 0
0 0.2

]
,

and the remaining parameters are set as µ = 0.3, τ = 0.4, h = 0.6

with the transition probability matrix Π =

[
−2 2
3 −3

]
.

By solving LMIs in Theorem 3.1 we get,

P1 =

[
0.0742 −0.1262
−0.1262 0.4729

]
, P2 =

[
0.4047 −0.0957
−0.0957 0.3065

]
, Q1 =

[
0.1829 −0.1264
−0.1264 0.2648

]
,

Q2 =

[
0.8875 −0.3993
−0.3993 1.1424

]
,Q3 =

[
0.1288 0.0192
0.0192 0.1548

]
, Q4 =

[
0.4264 −0.2396
−0.2396 0.5939

]
,

Q5 =

[
0.2911 −0.1757
−0.1757 0.4041

]
,Q6 =

[
0.0489 0.0054
0.0054 0.0648

]
, Q7 =

[
2.9417 −2.0088
−2.0088 9.0892

]
,

Γ1 =

[
7.5053 0

0 7.5053

]
, Γ2 =

[
4.9091 0

0 4.9091

]
, S =

[
0.1379 −0.0397
−0.0397 0.1560

]
,

X =

[
0.5041 0.7590
0.7590 2.6012

]
.

The control gain matrix is given by K = S−1X as K =

[
0.4063 −0.1555
−0.1883 0.6059

]
.

5 Conclusion
This paper concerns the Markovian jumping nonlinear multiagent system with mixed delay using reliable
sampled data control. To get stability condition for the multi-agent system, we choose the relevant Lyapunov
Krasovskii functional and constructing the suitable lemmas such as new integral inequality, Jensen’s inequality,
then the result can be obtain in the form of linear matrix inequalities. At last a numerical example is given to
show the effectiveness of the proposed theoretical results.
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